Happy International Artist Day!

- Park your phones
- Grab your calculators
- Start the warm up
Area of a \(\triangle \)

1. **Heron's Formula**
 \[
 A = \sqrt{s(s-a)(s-b)(s-c)}
 \]
 \(s \) = semiperimeter
 \(a, b, c \) are sides

2. \(A = \frac{1}{2} b \cdot h \) or \(A = \frac{b \cdot h}{2} \)
 base = \(b \)
 height = \(h \) \(\geq \) make 90° angle

3. \(A = \frac{1}{2} a b \sin C \)
 \(a, b \) are sides and \(C \) angle
 "SAS" \(\text{in between } a \text{ and } b \)
Area of Triangle Warmup

Find the area of the triangle

1) **Heron's Formula**
 \[A = \sqrt{s(s-a)(s-b)(s-c)} \]
 \[s = \frac{a+b+c}{2} = 14.5 \]
 \[A = 36 \text{ km}^2 \]

2) **Trigonometric Area Formula**
 \[\text{Area} = \frac{1}{2}ab \sin(C) \]
 \[A = 45.77 \text{ m}^2 \]

3) \[A = \frac{1}{2}bh \]
 \[A = \frac{1}{2} \cdot 7 \cdot 16 \]
 \[A = 56 \text{ m}^2 \]
Right Triangle Trigonometry Warm-up

1) \[\sin 40^\circ = \frac{R}{25} \]
 \[25 \cdot \sin 40^\circ = R \]
 \[16.07 = R \]
 \[\cos 40^\circ = \frac{S}{25} \]
 \[25 \cdot \cos 40^\circ = S \]
 \[19.15 = S \]

2) \[\sin 36.2^\circ = \frac{88}{T} \]
 \[T \cdot \sin 36.2^\circ = 88 \]
 \[T = \frac{88}{\sin 36.2^\circ} \]
 \[T = 149 \]
 \[\cos 36.2^\circ = \frac{U}{88} \]
 \[U = \frac{88}{\cos 36.2^\circ} \]
 \[U = 120.24 \]

3) \[\alpha = 53.8^\circ \]

4) \[25^2 - 7^2 = x^2 \]
 \[x = 24 \]

\[\alpha = 38.1^\circ \]
\[V = 190.61 \]
\[W = 117.62 \]
\[\tan 51.9^\circ = \frac{180}{W} \]

\[\theta = \cos^{-1} \left(\frac{2}{3} \right) \]
\[\theta = 73.74^\circ \]
\[\sin \theta = \frac{2}{3} \]
\[\theta = \sin^{-1} \left(\frac{2}{3} \right) \]
\[\theta = 41.81^\circ \]
Right Triangle Trigonometry Warm-up

Solving Right Triangles Practice

Use a trigonometric function to find the value of x. Round to the nearest tenth.

6. \[\text{\text{Diagram with angle 30\degree and side 8}} \]
7. \[\text{\text{Diagram with angle 80\degree}} \]
8. \[\text{\text{Diagram with angle 22\degree and side 10}} \]

9. \[\text{\text{Diagram with angle 60\degree and side 5}} \]
10. \[\text{\text{Diagram with angle 51\degree and side 8}} \]
11. \[\text{\text{Diagram with angle 63\degree and side x}} \]

Find the value of x. Round to the nearest tenth.

12. \[\text{\text{Diagram with side 5 and 4}} \]
13. \[\text{\text{Diagram with side 7 and 13}} \]
14. \[\text{\text{Diagram with side 15 and 2}} \]

Use a trigonometric function to find each value of x. Round to the nearest tenth if necessary.

7. \[\text{\text{Diagram with angle 30\degree and side 7}} \]
8. \[\text{\text{Diagram with angle 20\degree and side 32}} \]
9. \[\text{\text{Diagram with angle 40\degree and side 17}} \]

Use trigonometric functions to find the values of x and y. Round to the nearest tenth if necessary.

10. \[\text{\text{Diagram with angle 41\degree and sides 28 and y}}} \]
11. \[\text{\text{Diagram with angle 19.2 and sides 17 and x}}} \]
12. \[\text{\text{Diagram with sides 7, 15.3, and y}}} \]
The Law of Sines

An oblique triangle is a triangle that does not contain a right angle.

\[\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \]

Law of Sines: In any triangle ABC: \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)

Ratio \Rightarrow \text{proportions}

Law of Sines can be used when given AAS, ASA, or SSA

Right \(\Delta \)’s vs. Oblique \(\Delta \)’s

- Sides: Pythagorean Thm
- SohCahToa
- Angles: Triangle Sum
- Inverse SohCahToa

- Sides: Law of Sines
- Angles: Triangle Sum
- Inverse Law of Sines

*If it’s a right \(\Delta \) use SohCahToa
Example 1: If $B = 20^\circ$, $C = 31^\circ$, and $b = 210$, solve the triangle.

\[
\frac{a}{\sin 20^\circ} = \frac{b}{\sin 129^\circ} = \frac{c}{\sin 31^\circ}
\]

\[
A = 180^\circ - 20^\circ - 31^\circ = 129^\circ
\]

\[
a = \frac{210 \cdot \sin 31^\circ}{\sin 20^\circ} = 316.23
\]

\[
c = \frac{210 \cdot \sin 129^\circ}{\sin 20^\circ}
\]

Example 2: Solve triangle ABC, if $A = 63^\circ$, $B = 49^\circ$, and $c = 78$

\[
\frac{78}{\sin 68^\circ} = \frac{a}{\sin 63^\circ} = \frac{b}{\sin 49^\circ}
\]

\[
a = \frac{78 \cdot \sin 63^\circ}{\sin 68^\circ} = 74.96
\]

\[
b = \frac{78 \cdot \sin 49^\circ}{\sin 68^\circ}
\]

Example 3: Solve the triangle. $A = 10^\circ$, $C = 60^\circ$, and $b = 14$

\[
\frac{14}{\sin 110^\circ} = \frac{a}{\sin 10^\circ} = \frac{c}{\sin 60^\circ}
\]

\[
B = 110^\circ
\]

\[
c = 12.9
\]

\[
a = 2.59
\]
Find each measurement indicated. Round your answers to the nearest tenth.

1) Find BC

2) Find AB

3) Find \(m \angle K \)

4) Find \(m \angle R \)

5) Find AB

6) Find \(m \angle B \)
Solve each triangle. Round your answers to the nearest tenth.

7) In \(\triangle RST \), \(m \angle S = 44^\circ \), \(m \angle T = 97^\circ \), \(s = 21 \)

8) In \(\triangle QRP \), \(m \angle Q = 118^\circ \), \(p = 18 \), \(q = 30 \)

9) In \(\triangle EFD \), \(m \angle D = 75^\circ \), \(d = 30 \), \(f = 7 \)

10) In \(\triangle YZX \), \(m \angle Z = 24^\circ \), \(m \angle X = 97^\circ \), \(y = 19 \)