Write the equation of the sine graph given below (use radian measure)

\[y = 8 \sin\left(\frac{\pi}{2} \theta\right) \]

Write the equation of the cosine graph given below: (use radian measure)

\[y = 3 \cos\left(\frac{\pi}{2} \theta\right) \]

The equation \(P = 100 + 20 \sin 2\pi t \) models a person’s blood pressure \(P \) in mm of mercury. \(t \) is seconds) The blood pressure oscillates 20 mm above and below 100 mm, which means that the blood pressure is 120 over 80. This function has a period of 1 second, which means that the person’s heart beats 60 times a minute.

a. Find the blood pressure at:

\[
\begin{align*}
\text{t}=0 & \quad 100 \\
\text{t}=0.25 & \quad 120 \\
\text{t}=0.5 & \quad 100 \\
\text{t}=0.75 & \quad 80 \\
\text{t}=1 & \quad 100 \\
\end{align*}
\]

b. During the first second, when was the blood pressure at a maximum? Minimum?

Maximum .25 seconds
Minimum .75 seconds
Buoy Problem

* Depending on your graph, there are 2 options

Amp: 1.5
Midline: y = 0
Period: 10 sec.

Cosine is best choice

Radians \(\frac{2\pi}{B} = 10 \quad B = \frac{\pi}{5} \)
\[y = 1.5 \cos \left(\frac{\pi}{5} \theta \right) \]

Degrees \(\frac{360}{B} = 10 \quad B = 36 \)
\[y = 1.5 \cos (36 \theta) \]

Amp: 1.5
Midline: y = 1.5
Period: 10 sec.

Radians \(\frac{2\pi}{B} = 10 \quad B = \frac{\pi}{5} \)
\[y = 1.5 \cos \left(\frac{\pi}{5} \theta \right) + 1.5 \]

Degrees \(\frac{360}{B} = 10 \quad B = 36 \)
\[y = 1.5 \cos (36 \theta) + 1.5 \]